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A Chebyshev Polynomial Rate-of-Convergence 
Theorem for Stieltjes Functions 

By John P. Boyd 

Abstract. The theorem proved here extends the author's previous work on Chebyshev series [4] 
by showing that if f(x) is a member of the class of so-called "Stieltjes functions" whose 
asymptotic power series 2 a xn about x = 0 is such that 

li log I an | 

no nlogn 

then the coefficients of the series of shifted Chebyshev polynomials on x E [0, a], bn Tn*( x/a), 
satisfy the inequality 

2 logI(logIb,,)2 r 
r + 2 nmoo log n 2 

There is an intriguing relationship between this theorem and a similar rate-of-convergence 
theorem for Pade approximants of Stieltjes functions which is discussed below. 

A Stieltjes function is defined by the integral 

(1) + xt 

where the weight function p(t) is such that 

(2) p (t) ,> 0, t EE [O,xo], 

and all the moment integrals 
00 

(3) an =| np (t) dt 

exist for all nonnegative integers n [3]. Although special, this class of functions plays 
a major role in nuclear, atomic, and elementary particle theory, in critical phenome- 
non, and in a variety of other fields as shown in the books by Baker [2], Graves-Morris 
[8], [9], and Cabannes [6]. One reason for the great attention given to the Stieltjes 
functions is that one can prove the convergence of the Pade approximants formed 
from their power series. The purpose of this brief note is to show that one can prove 
a rate-of-convergence theorem for the Chebyshev polynomial series of these func- 
tions which is similar to-and intriguingly related to-that already known for Pade 
approximants. 

By expanding (1 + xt)-' in (1), using the binomial theorem, and then integrating 
term-by-term, one can show that the coefficients of the power series expansion of 
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f(x) are (- l)'a,, where the an are defined by the moment integrals (3). The power 
series is only an asymptotic series, however, because f(x) has a branch point 
singularity at x = 0. 

In a similar way, by using the known Chebyshev expansion [11] of (1 + xt)-', one 
can derive 

00 

(4) f(x) dn(- n 
n=O 

where do 1, dn = 2 for n > 1, where the Tn*(x) are the shifted Chebyshev 
polynomials defined on the interval [0, 1], and where 

(5) b 1qnp(t) dt, 
o (l?t)1/ 

where 

(6) q(t) = I1-t2 [(1 + t)1/2 _1]. 

The similarities between (5) and (3) are striking: both the power series and 
Chebyshev coefficients are defined by integrals involving the product of p(t) with a 
function of t raised to the nth power. However, whereas the power series is only 
asymptotic and the binomial expansion of (1 + xt)-' is convergent only for t < l/x, 
one can show that the Chebyshev series of f(x) converges faster than any finite 
inverse power of n and also that the Chebyshev expansion of (1 + xt)-' is conver- 
gent for any finite t. The proof that the Chebyshev series of f(x) converges 
exponentially on [0, 1], despite the singularity at x = 0, follows from a simple 
integration-by-parts argument [7] that depends only on the boundedness of all 
derivatives of f(x) at the singular point, which for the Stieltjes functions is 
guaranteed by the existence of the moment integrals (3). 

Our goal is to relate the magnitude of the Chebyshev coefficients bn to the 
magnitude of the asymptotic series coefficients an, working through the integral 
representations of these coefficients, (3) and (5). To do this, let us write 

00 
(7) b =| B(t) dt, 

split the integral into two via 

(8) I,= |f B(t) dt, 

00 
(9) I2= B(t)dt, 

na 

where a is a cutoff that will be chosen later, and then prove separate bounds on each 
integral. 

LEMMA 1. If the integral I, is defined by (8), (7), and (5), then 

(10) IL <f(0)e-0.828n[1-o/2' 

for a > 0. 
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Proof. It is easy to show that q(t), as defined by (6), is a monotonically increasing 
function of t. In consequence, 

(l11) 01 to (1 + t)1/ qnp(t) dt 

(12) < [ q( n)] nlna p(t) dt. 

Since p(t) is nonnegative, the integral in (12) is obviously bounded by the corre- 
sponding integral with an upper limit of x, which is aO = f(0) according to (3). We 
can in turn put a simple bound on qn(na) by writing 

(13) qn = e nlog[I-T] 

where 

(14) T = j [(l + t)1/2 _ 1]. 

Identity 4.1.34 of [8] shows that 

(15) en log[l - T < e-nT 

for all positive n and T. Since the ratio 

(16) T(t) _ 2 [(1 + t)1/2 
- 1], (16) 

~~~~~P/t1/2 Pt"'2 

where P is a positive constant is monotonically increasing with t for any t > 1 and is 
> 1 for P < 2[21/2 - 1], it follows that we can replace T on the right-hand side of 
(15) by p/tl12 without disturbing the inequality if P < 2[21/2 - 1] = 0.828. Replac- 
ing t in (14) and (15) by na and then substituting (15) into (12) then gives the lemma. 

LEMMA 2. If the integral I2 is defined by (9), (7), and (5), then, for a > 0, 

(17) I2 < c-nalog(n)a 

where the an are the power series coefficients defined by (3). 

Proof. By multiplying and dividing the integrand by tn, the definition of I2 gives 

(18) o2 c (q/t)ntnp(t) dt 
an (1 +t)2 

Since q(t) < 1 for all positive t and (1/t) is monotonically decreasing, 

(19) tnp(1tftnp(t 
(2 1 + na') /2 [na dta 

Since the integrand is identical with that which defines the power series coefficient 
an and since p(t) > 0, it follows that 

(20) I2 < nana 

which is the lemma. 
Together, the two lemmas show that 

(21) bn < e-0828n 1-a/2]f(0) +e -nalog(n)a 
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for any positive a. The remaining step is to choose a in such a way that the bound 
(21) is as tight as possible. 

To do this, it is helpful to define a measure of how rapidly the an are growing with 
n, as done previously in Boyd [4]: 

Definition. The order r of the asymptotic series 2 a x' about x 0 O is defined by 

(22) r _ lim log a[ 
n-*0nlog(n)~ 

Thus, the series (-_l )nn!Xn has order 1, while (-_l )n(2n)!xn and (-_l )n(n !)2xn 
both have r = 2. The greater the order of the series, the more rapidly the an increase 
with n. 

In a similar way, again following Boyd [4], we have 
Definition. The index of exponential convergence /3 of the series E bnT*(x), where 

the T*(x) are the shifted Chebyshev polynomials defined on x E [0, 1], is the least 
upper bound of those k for which 

(23) | bn pe qn 

can be satisfied for all n with some finite positive constants p and q. 
We can now state the following 

THEOREM. If f(x) is a Stieltjes function with an asymptotic power series about x 0 O 
whose convergence order is r, as defined by (22) above, then the index of exponential 
convergence /3 of its shifted Chebyshev polynomial series on x E [0, 1], as defined by 
(23), must satisfy 

(24) 2 > I > - r+e' 

where - > 0 may be arbitrarily small. 

The theorem can be extended to Chebyshev expansion intervals [0, a] by making 
the trivial change of variable x -* (x/a). 

Proof. The left inequality in (23) is proved in Boyd [4] and is in fact valid for any 
function, not necessarily a Stieltjes function, which is singular at x = 0 but has an 
asymptotic power series about x = 0 so that all its derivatives there are bounded. 

The right inequality can be proved by setting 

(25) a = r + E 

in (21). The definition of the order, (22), then guarantees that, in the limit n - , 
the second term in (21) is exponentially small (O[exp{-n E log(n))]) in comparison to 
the first. Neglecting this second term then gives the theorem. 

One can state the theorem in somewhat looser terms as follows: if the power series 
coefficients an - (n !)r for large n, then the Chebyshev series coefficients bn must 
converge at least as fast as the sequence exp[-n(' -2[r+e])], where e is an arbitrarily 
small positive number. The author's previous work [4] has put an upper bound on 
the rate of convergence of the Chebyshev polynomial series for functions which have 
asymptotic power series about one endpoint of the expansion interval. The theorem 
proved here shows that, for Stieltjes functions, a lower bound on the rate of 
Chebyshev convergence is also possible. 
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There is an intriguing relationship between the Chebyshev theorem derived here 
and previously known theorems for Pade approximants of Stieltjes functions, despite 
the fact that these two methods of approximating a function are seemingly very 
different. 

Bender and Orszag [3] note, rephrasing their results in terms of the language used 
here, that if a Stieltjes function is of order r, then, writing the Pade approximants as 
continued fractions, the maximum difference between the nth continued fraction 
FJ(x) and the next highest continued fraction F,+ I(x) on a finite interval in x is 
bounded by 

(26) max I F,,(x) - FJ+I(x) I< ep 
x(E[0,1] 

for some positive constant p. Since the continued fractions correspond to partial 
sums of a series, the difference between two adjacent continued fractions is directly 
analogous to the series coefficient bn+ Thus, (26) is equivalent to the statement 
that, for continued fractions, the index of convergence is /P 1 - r/2 precisely- the 
same as the lower bound on the Chebyshev index of convergence. 

This relationship between Chebyshev series and Pade approximants also exists for 
functions which have no singularities on the expansion interval. One can show, for 
example, that the error in the continued fraction at a point z for the function 
f(z) = z- ln(1 + z) decreases geometrically with n at a rate identical with that of 
the Chebyshev series on the interval [0, z] for the same function where z may be 
complex. (The Pad& approximants for this function are discussed in Bender and 
Orszag [3] and the Chebyshev theory for a function with a simple pole or branch 
point in Gottlieb and Orszag [7].) Obviously, the relationship between Pade ap- 
proximants and Chebyshev series deserves further exploration. Luke [10] has already 
made a beginning. 

It is easy to show by a specific example, however, that one cannot replace the right 
inequality in (24) by an equals sign nor naively assume that Chebyshev and Pade 
methods will always give identical accuracy. The Stieltjes function, the prototype of 
the class of the Stieltjes functions, is defined by 

00 -t 

(27) f(x) = 
I t dt. 

It is shown in Luke [10] that the Chebyshev coefficients satisfy 

(28) b O[e-312/3], 

so that the index of convergence /3 2/3 as is given by equality in the left 
inequality in (24). In contrast, the difference between adjacent continued fractions 
for this same function satisfy 

(29) Fn-F Ole -pn / 
2 

for some positive constant p for fixed x. Thus, for the Stieltjes function, Chebyshev 
polynomials are vastly superior to Pade approximants. 

An obvious goal of future work is therefore to determine if the theorem proved 
here can be sharpened to perhaps show that 3 = 2/(r + 2) exactly at least for some 
subclass of the Stieltjes functions. One powerful method of deriving asymptotic 
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expressions for the Chebyshev coefficients of an individual function is by using the 
method of steepest descents as in Luke [11] and Boyd [5]. It may well be that, for 
density functions p(t) which are smooth enough so that steepest descents can be 
applied, /= 2/(r + 2) always. However, the density function p(t) can be very 
nonsmooth-even a distribution. Since Chebyshev series are very sensitive to the 
smoothness of the function being expanded, it may well be that Stieltjes functions, 
whose density functions p(t) are distributions, have /B 1 - r/2, so that (24) is the 
best one can do for the class as a whole. 
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